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In  his memoir “On the Energy of Storms”, Margules 
devised methods for the calculation of the maximum 
kinetic energy of atmospheric systems that can result 
from the rearrangement of two air masses of differing 
properties, from an initial unstable arrangement to one 
possessing stability. Although his results show that the 
kinetic energy made available by these processes is suffi- 
cient to account for observed wind velocities, no attempt 
was made by Margules to deduce the probable distribu- 
tion of this kinetic energy within the air masses wdiich 
comprise the systems studied. In  order to secure some 
idea of the character that this distribution might be ex- 
pected to assume, a problem similar in certain respects to 

M 

earth’s rotatmion on all the motions involvecl in the readjust- 
ment? Also, what will be the distribution of velocities 
genera ted by the action of pressure gradients and of 
Coriolis forces within each mass of fluid? 

In outline the changes that take place upon the transi- 
tion to a state of equilibrium may be described as follows: 
A portion of the denser fluid located in the region A in the 
initial state will tend to be displaced to the right. Sinco 
this displacement is accompanied by a Coriolis force ac ting 
a t  right angles to the direction of motion, a transverse 
horizontal velocity will be generated in this portion of 
fluid. In n steady state this velocity must be accompanied 
by a gradient of pressure which in this case is supplied by a 
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FIQunE 1.-Two fluid maqses in the initial stnte. 

some of the cases treated by Margules will be formulated 
and solved making use of a principle which may be alluded 
to as that of conservation of absolute vorticity. Because 
of the great complexities which arise in an attempt to deal 
with a compressible atmosphere, attention will be COP- 
h e d  to a system composed of two homogeneous and in- 
compressible fluids of slightly differing densities. It will 
also be assumed in the treatment that all frictional effects 
are absent. 

Let it be supposed that in the initial state two masses of 
fluid of differing densities lie side by side, a t  rest relative 
to the earth, separated by a vertical plane as in fi ure 1, 

thus formed is considered as being of uniform thickness 
and extencling an infinite distance to the right and to the 
left. The problem for which a solution is sought may be 
stated as follows: Assuming no mixing of the fluids, what 
will be the shape of the free surface and of the internal 
boundary, if the system is allowed to come infinitely slowly 
to equilibrium, taking into consideration the effect of the 

with the lighter fluid to the right. The horizonta 7 layer 

1 This paper is a report 011 an investigatlon which. has been conducted at the Massa- 
chusetts Institute cl,Technology in cooperation with the Weather Bureau under the 
BankheadJones Special Besearch Fund. 
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mutunl adjustment of the slope of the free surface and of 
the internal boundary separating the liquids. Likewise 
a portion of the lighter fluid originally situated at  B will 
tend to move to the left, bringing about a transverse 
velocity in the opposite sense. The requisite pressure 
gradient in this case is produced by the deformation of the 
free surface alone. 

Due to the fact that continuity of depth must be 
preserved throughout the layer, it must be assumed that 
some lateral movement with resulting transverse velocities 
must occur in the regions farther to the left and to the 
right, decreasing to zero a t  great distances from the 
original discontinuity. It is now possible to schematically 
represent the final state as in figure 2. 

It thus appears that for the purpose of analysis the 
system may be divided into three regions, regions I and 
111 in figure 2 consisting of a single la er, while region II 
consists of two superimposed layers. 4 he distances c and a 
are to be obtained as a result of the investigation. In  the 
above diagrnm the positive y direction is taken to the left 
and the positive 2 direction as perpendicular to the plane of 
the figure away from the reader, while the origin is located 
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at, 0. For convenience, the diagram is taken 111 the plane 
of a meridian with tlie positive y direction estending north- 
ward. In  the Northern Hemisphere this leads to easterly 
winds in the regions marked E and westerly winds in the 

of t8he axes, this choice of coordinates will not produce any 
lacli of generality in the results. 

Restricting our att<ention for the present to region I, let 
it be assumed that, a column of fluid which in the initial 
state was located a t  a point yo1 and had a width dyo' and 
a heiglit Do is iiow locntetl a t  a point y, has a width d y  
nnd a height D'. The principle of continuity of mass gives 

I n  the above p,, may be taken as the pressure a t  the sur- 
face, for which the value gpD' niay be substituted. Sub- 
stituting also for u' from (5), 

(7) region marked TI'. Since the equations of motion used in 
meteorology are independent of the azimuthal orientation 

0 = -f'(y - y"') - 9- dD' . 
t lY 

dD1 Substituting for - froni (3), 
dY 

Qo d"ol o= (y-yyo') +-- 7- 
f' dy' 

(8) 

Since tlie quantities g ,  Do niidf are considered constant in 

m I I I 

E 

FIOIJBE 2 --Schematic diagram of the flnal state. 
Y'O 

(I)  this whole discussion and since t,he factor 9 recurs 

frequently. a quantity X having the dimensions of a length 
will be defined as follows, and substituted in the equations: 

(9) 

pDodyo'=pD'dy 

DI=D d&' (2) 
O dY 

or 

where y is the acceleration of gravity and p is the density. 
By differentiation, A=--- JBno 

. .  
-7 (3) 

Equation (S) now becomes, 

(10) 
Indicating velocities in the x direction by u' and velocities d'yo' I 

dY2 
7-+p(y-yyo')=o. in the y direction by v the equation of motion for the 

transverse velocity of the element, since no net esternal 
forces nre present, is The solution of this equation is easily shown to be 

where f is the Coriolis parameter 2 Q sin4. 
between the limits yo' and y 

Integrating 

ur =f(y- YO'). (5 )  
This implies that the velocities are constant with elevation 
and therefore the pressure gradien ts must be independent 
of elevation--a result which agrees wit8h hydrostaticnl 
considerations. 

Since a steady state is assumecl, in the final condition 
the gradient wind equation niust be fulfilled. For straight 
line flow, this w-ill be 

In this equation Qr and Q"' nre constants of integration 
which must he fised hp boundary conditions while e is 
the Napierian base. Obviously Q"' must be zero in region 
I since the liquid is to be undisturbed a t  great distances 
to the left. This is only possible if yI0=y for large values 
of y. The value of Q' on the other hand cannot be 
determined a t  this point, but niust be evaluated later, 
siniultaneously with the determination of other similar 
integration consttLnts for the remaining two regions. 
The fundamental equation for region I, giving the lateral 
change of position of a particle from the initial to the 
final state niay be written, 
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From this equation the ve.locity distribution niay be 
obtained by the aid of equation (5) and is found to be, 

Y -- 
(13) ul= -fpe x 

By differentiating (13) with respect to y and combining 
the result with (2) an espression for the shape of the free 
surface results, 

(14) 

Considering now the conditions in region 111, an ex- 
actly analogous line of reasoning may be followed as wis 
used above, and an equation comparable to (11) niay 
be set down, 

(1 5 )  

It is clear, however, that now the constant Q' must be 
zero since the fluid is not' disturbed a t  great distances to 
the right, and the fundamental equation for region 111 
becomes 

Y 

y2II = y + &"'ex. (16) 
The constant &I1' will be evaluated later. 

Espressions for the velocity distribution and for the 
shape of the free surface may be written imrnediiLtely us 
in the case of region I. 

and 

These are respectively, 
Y 

(17) 

(1% 

Turning our attention to region 11, the situation is more 
complicated due to the presence of a double layer. Re- 
taining the convention of indicating quantit'ies referring 
to  the initid state by the subscript zero, and designating 
quantities applying to the upper layer by prinies, an 
elemental vertical column extending from the surface to 
the top will now be considered. Corresponding to equa- 
tion (l), which specified the requirement of continuity of 
mass, there are now two such equations: 

p == - f QIIIe5;, 

D1I1=D0 .["I 1 +,@"ex . 

p Do'dy~I' = p'D"'dy, (19) 

for the upper layer and 

pDdt~O"= pDI'dy (20) 

for the lower layer. I n  these two equations a distinction 
is made between the quantities Do and Dof.  Although 
according to the statement of the problem made pre- 
viously these are equal, this simplification will not be 
made a t  this point, in view of the possible application of 
the equations derived to more general problems than the 
one dealt with a t  present. Solving (19) and (30) for the 
depths in the final state, 

(21) 

(32) 

and 
(23) 

Corresponding to equation (5) there are two espressions 
for velocity, namely 

and 

We also have two gradient wind equations: 

for the upper layer and 

(27) 

(28) 

for the lower. A question now arises as to the interpreta- 
tion of pa' in equation (27). Since (27) involves only the 
gradient of pressure and not the absolute value of the 
pressure, the derivative appearing may be evaluated by 
forming an expression for the pressure distribution along 
any level surface in the upper layer, and differentiahg. 
This can be done conveniently by considering the pressure 
at  a level surface situated a t  an arbitrary elevation 2. 
Thus 

Differentiating and changing to ordinary derivatives, 

p = gp' (DIIf + D" - 2). (29) 

For tlie lower layer, 

and 
p a  = gp'D" ' + gpD" (31) 

Substitmuting in equations (27) and (38) from (25) and 
(26) and also from (30) and (32) 

Subst,ituting in the above two equations for the deriva- 
tives of the depths tlie values given by (23) and (24), 
we get,: 

and 

We thus finally have a pair of second order simultaneous 
differential equat'ions involving the single independent Differentiating the above with respect to y 
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variable y and two dependent variables yo1*’ and yo”, 
which must be solved. Customary methods of separating 
the dependent variables lead to two fourth order equations 
whose solutions contain eight constants of integration. 
Rather than to pursue this course the separation of 
variables will be efl’ected as follows: Let the first equa- 
tion be multiplied by an umcletermined constant factor a,  
so that the equations have the form, 

d2yo11’ - g [( :+ a )  Do’ dy” + (1 + a) D $ F ]  - (39) 

Rearranging, 

0 = f*[yo’: + a y y  - (1 + alYI 

The solutions of (48) and (49) may be set down h m e -  
diately in the form 

and 

in which K,, K,, Q,, and Qz are constants of integration 
and K~ and K~ are given by 

A1= ( l + ~ ~ ~ ) y + K , e ~ l ~ + Q ~ e - ~ ~ ~  (50) 

d2= (1 + a2)y+K2e‘au+ Q2e-N3v, (51) 

1 
K2= x J l f a a  (53) 

Reverting to the original dependent variables, yd” and 
yo11, we have from (44) and (45) 

a id  
L41 -A2= a1y:”- azY:”=~~I’(a~-aZ), (54) 

(55) 1 1 1  -A1-A2 
Yo -=&- 

and 

Let the value of a be now defined SO as to make the coeffi- 
cient of y:” in the first brackets equal to the coefficient 

Substitutblg ill ( 5 5 )  and (57) from (50) and (51), 

of y,,II‘ 111 the second brackets. Ths gives the relation yoII’= y + - [ KleclY - I<2~Kau + Q,e-Klv- Qre-‘av]; (58) 
al - a? 

(41) and a=- P ‘ + P a  n,l 
P 0 + 4  Do, 

Yo”=Yf- [a2Kle~lu- alK2e‘tY+ a2Qle-x1u- a l ~ 2 e - x ~ v ~ .  (59) 

Let the simplification now be made that P o = D 0 .  

(60) 

(61) 

which has two roots, az-ai 

(yl= -~ Do-Do’+5d 1 (Do-Do’)’ D; += 4p‘Do‘ (42) From (42) and (43) it is seen that 
2 0 ,  

and 
a2= - Do- 2Do Do’ - ’J 2 (Do io?’)’ +r 4 PI  Do’ (43) 

Let two dependent variables A1 and Az be defined by the 
following: 

AI = yoI’ + (YlYOII’, (44) In other words we may say that 

A 2  = 3:’ + a2ygl”. (45) (@) 
Introducing these into (40) two equations in which the 
variables are separated are obtained: The final form of the fundainental equations for regioii I1 

thus becomes, 
1 

2a 
y:”=y+, [KleKlv-IC2e1~~+ Qle-K1~-Q2e-x~*], (63) (46) 

gD0 d2Al. 0 = Al - (1 + al)y -- (1 + a1)- 2 f’ dY2 

(47) 

Introducing and rearranging, By the aid of (25) tlnd (26) espressions for the velocities 
in the two layers are obtained: 

(48) 

(491 

d’d, 1 

(PL4, 1 
dy’ (1 - I - a 2 ) X 2  

-[A - (1 + a1) yl = 0 ; 

[Az- (1+adyl=O. 

-- 
dy2 (1fa1)XZ - - - - [ K , A ~ I ~ - K ~ ~ * ~ ~ + & ~ B - ~ ~ ~ - & ~ ~ - ~ I ~ ] ,  (65) 

9 u”= - ~ [ K 1 e + ‘ + & e K a Y - ~  Qle-Klu+ Q2e-c9v]. (66) 

2 1Y 

__ 

I 1 This procedure was suggested to the writer by Prof. C. Q. Rossby. 
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By means of (22) and (64) the position of the internal 
boundary may be specified: 

The thickness of the upper layer can be obtained in a 
similar manner from (21) and (63): 

DII'=Do 1 +~(KIKlexlY-KZKZex~'- &IKle-'IY+ Q2~2e-rsu)]-  (68) c 1  
The shape of the free surface is given by the sum of D"' 

and Dxl for each value of y. 
Having derived the fundamental equations (12) and (16) 

for regions I and 111, respectively, and (63) and (64)for region 
111, it is next necessary to determine simultaneously the 
six integration constants Q, PI1, Kl, K,, Q1, and Qa and 
also the constants c and a. In  order to accomplish this it 
is necessary to have eight equations not involving the 
independent and dependent variables. By examining 
the requirements a t  the two vertical boundaries separating 
the three regions it will be seen that there exist exactly 
eight independent boundary conditions which can be inter- 
preted in the form of the eight required equations. 

Taking first the vertical a t  y=O in figure 2, the fluid in 
the upper layer of region I1 a t  this point originally was 
located a t  the discontinuity, hence the condition exists 
that when 

Continuity of displacements gives the relation that when 

J y=-c 
yolII * (75) 

Finally again c0ntinuit.y of depth gives the condition 
y=-c 1 

Imposing these eight boundary condit'ions in the order 
given upon the fundamental equations (12), (16), (63), 
and (64), there restdt the eight equations written below: 

- aa= ,[IC1 - Kz + &I - Q21 (77) 
1 

1 
2 - 1 =-[Kl~le-x~C+K~2e-K~C- &l~leriC-Q&z~zeKaC] (82) (69) 

upper layer of region I1 becomes zero, hence mcording to 

dyt'' . (70) 

Also it was assumed t h ~ t  a t  this point the thickness of the 

(21) when ,&IIIe =-[K,e-~~~-K~e-xs~+ 2 Qlexlc- Q,e~f] 
c -- 

(83) 
A 1  

1 -; 1 aQ"I_xe =jj[KlKle-'1'- K2K2e-'YC- &IKlf?'lC+ &2~ZexsC] (84) -- dY ' /=OI  -0 

Since the fluid in region I is in contrlct, with the fluid in the 
lower layer of region I1 a t  y=O, there must be continuity 
in the disp1accnient.s a t  this point so that 

(71) 
Yo1 = Y,'I 

Finally, since the depth of the fluid in the lower layer of 
region I1 must, be the same as that of region I a t  this point, 
we have from (2) and (22) 

(72) 

At the vert4icrll houiirla.r;v between regions 11 and 111 
there exist, four additional conditions which arc coni- 
parable to the four already given.. Espressing the dis- 
placement of the lower layer of region I1 a t  t'his point, we 
have the condition 

I- y= -c 
yo"=-a (73) 

The Fanishing of the thickness of the lower layer gives the 
condition that 

It will be noted that a11 the constants enter these equatinns 
linearly except c,  which is contained both linearly and 
exponentially. It is therefore possible to eliminate the 
six constants of integration and a algebraically, the result 
being a single esponcntinl equation in c which can be 
solved by trial for nny particular numerical example. 
When this has been accomplished. the reninining con- 
stants may be determined without difficulty. The actual 
process of carrying out the elimination beconies rather 
involved, however, and it would not be practical to 
reproduce the necessary steps in this discussion. 

From the relation expressed by (62) i t  is seen tlint the 
solution of the entire problem depentls in n o  way upon 
the absolute values of the densities but only upon their 
ratio d. Taking a figure of 0.960,788 for this ratio, 
a, K ~ ,  and K' have the following values: 

P 

a=0.980,198 
0.710,634 

x 
7.106,335 

x 

K1= 

K2 

P' 
(74) P 

This particular choice of - makes K~ exactsly t,en times 
larger than K~ which simplifies the calculat.ion slightly. 
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Corresponding to these conditions the eight constants to 
be determined assume the numerical values given below 
in terms of A. It w-ill be found that these figures satisfy 
the last, eight equations sufficiently closely for practical 
purposes. 

C= $0.336,10X 

a= +0.159,07X 

Q'= +O.O09,08X 

p= +O.O10,7SX 

KI= -O.'i69,48X 

K z =  +0.150,86X 

Q1= +0.622,61 X 

Q 2 =  +0.014,20X 

Inserting these figures in the espression for t81ie depths 
discussed previously, and assuniing a value of Do equal 

right of the free surface and the generntion of mild easterly 
winds as shown in the velocity diagram. In  region I11 
there is also a shift of the fluid to the right amounting 
to 0.00771X at, y=-0.3361X and decreasing to zero for 
large negative values of y. This causes a piling up of 
the fluid in this region so that the free surface again 
slopes downward t'o the right and provides the necessary 
Coriolian pressure gradient for the mild easterly winds 
indicated on the velocity chart. In  region I1 the original 
discontinuity M is located a t  y=-O.l5907X. In  t'he 
lower layer there exist easterly winds which a t  the 
boundary y=O are equal-in intensity to those in region 
I at this point, since continuity of displacement exists a t  
the boundary. Farther to the right these increase rap- 
idly and reach a maximum at  the point y=-0.3361X. 
The Coriolian pressure gradient, as  already mentioned, 
is here provided by the inclination of the internal boundary 
and of the free surface. 

In  the upper layer the lateral displacement of the verti- 
cal columns may be thought of as the sum of two effects. 

-.2692X I 
k? 

&" 
.20- 

VELOCITIES UPPER LAYER 

.05-- 

0 

:05-- 

-.IO-- 
--.E-- VELOCITIES LOWER LAYER 

720- 
FIGURE 3.-Readjustmtnt of two air masses under consprration of vorticity. 

h = J== 4 (2800 km) 

to the height of the homogeneous atmosphere which is 
taken to be eight kilometers, the shape of the free surface 
and of the internal boundary- may be plotted. In this 
way the diagram reproduced in figure 3 is obtained. In 
middle latitudes tlie vnlue of A is approsimately 2,500 
km., which gives a horizontal scale for the diagram. 

Likewise the velocities i m y  now be obtained. These 
are also plotted in figure 3, the unit of velocity beirig-fh 
which in niiddle latitudes hns the approsininte value of 
280 meters per second. The directions are taken :is 
corresponding to the Nortlieni Hemisphere. 

The general features of the final state may now- be 
described as follows: Beginning with region I, there is 
here a shift of the fluid to the right amounting to 0.009OSX 
a t  th\e point y=O, and decreasing with increasing posi- 
tive values of y. This leads to a slope downward to  the 

In t,he first, place, since there is a shift of the fluid in 
re.gion I11 t.o t'lie right, and since t,here must' be continuity 
of displacement a t  the. vert'icd boundary, the liquid in 
t,he upper 1ape.r in tlie vicinity of the boundary must 
take part in this motion to t,he right. Secondly, the 
vert,ical shrinking of the fluid columns from the original 
height Do tmo that shown on figure 3 must lead to a dis- 
placement t,o the left in order t,o preserve continuity of 
volume. Because these t,wo eff e,cts oppose one another, 
t,he,re must e,sist a vertical in the upper layer of region 
I1 at  which the displacement, the velocitry, pressure 
gradient and slope of the free surface a.re all zero. By 
set,t,ing yO1I'=y in equation (63) this vertical is found to 
be at  y=-0.269%. It is also apparent that the eleva- 
tion of the free surface must reach a masimum a t  this 
point. This turns out to be 8.064 km., or 64 met'ers 
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above the initial depth of the fluid layer. The velocities 
for the upper layer are as shown, being mild easterly 
to the right of this vertical and increasing westerly to 
the left. The free surface has a n  increasing slope down- 
ward to the left,, the depth reaching a minimum a t  y=O 
where the value is 7.927 km. or 73 meters below the 
initial depth. 

Having obtained a description of the equilibrium state, 
it becomes a matter of interest to esamine the energy 
changes that must occur during the transition. Initially 
the system possesses no kinetic energy, but has a certain 
amount of potential energy of mass distribution. In  the 
final state a certain kinetic energy of transverse circulation 
exists, while the potential energy is less than originally. 
It is now proposed to make a quantitative calculation of 
these energy changes. 

The change of potential energy between the two states 
in region I may be expressed in the form of the following 
integral; energy rendered available being reckoned as 
positive : 

(85) 
J U  \ -  - /  

Upon substitution for D' from ( 1 4 )  and integration be- 
tween the limits indicated it is found that this quantity 
assumes the value of 0.004,519 pgDo2h. Taking cognizance 
of the fact that one dimension of length is suppressed, it 
will be seen that this quantity has the dimensions of 
energy. 

The corresponding integral for region I11 gives the 
result that the change in potential energy is -O.O03,S66 

In  region I1 it is convenient to calculate the change in 
potential energy for each layer independently. In the 
lower layer an integral of the form of (S5) may be applied 
directly, although the integra tion is more laborious than 
in regions I and 111. The result is that the change in 
potential energy is equal to 0.O3Ol442~gU~'X. For the 
upper layer the integral has the form 

p'gD,2X or -O.OO3,714pgD~X. 

s" -0.3361X ~ - ( n " + ~ ) ] p ' g D r r r d y .  (86) 

The evaluation of this quantiby gives as a result, -0.031,- 
174pfgDo2X or -0.030,953pyD,sX. 

Summing for the three regions the net change in 
potential energy turns out to be +0.001,29.5~gDn2X, 

The kinetic energy of the transverse circulat,ion for 
region I may be expressed in the form of the integral, 

(Si) 

which turns out to have R value of O.C)00,030 Qf2Doh'. 
The unit of energy appearing here will be seen to be 
equivalent to that occurring ili the calculation of potential 
energy if the value of he substituted for Xz. ('or- 
responding integrals may be set up  for the remaining 
regions. giving the result tliat, the kinetic energy is 
0.000,150plf?DoX3 and 0.000,357pf'DoX3 for the upper and 
lower layers of region 11, respectively, and o.oon,o29 
efZDOh3 for region 111. Summing for the three regions, 
the total kinetic energy of transverse circiilation for the 
system beconies O.OOC),~%Q~~D~X~. 

Comparing this figure with that for the potential energy 
liberated during the readjustment,. it is seen that the latter 

17D" 
.f 

is about three times as large as tlie former, and the ques- 
tion arises as to the physical meaning of the lnrge differ- 
ence between these quantities. E t  will be recalled that in 
the original statement of the problem the assumption was 
made that the transition from the initial to  the final state 
proceeds infinitely slowly. Under these conditions it is 
permissible to neglect all accelerations in the y direction 
so that the system arrives a t  the equilihrium state without 
any finite velocities in the y direction. 

Had this restriction not been made, but instend the 
readjustment allowed to t ake  place a t  its natural rate, the 
solution obtained above would no longer describe com- 
pletely tlie conditions when the system arrives a t  the 
equilibrium state. In  addition to the transverse velocities 
in the x direction there would also exist finite velocities in 
the y direction. By virtue of these velocities the read- 
justment would proceed beyond the equilibriuin state, 
then reverse its direction and the system would continue 
to oscillate about the equilibrium position. It appears 
that the fraction of the potential energy liberated which 
is not used to establish a transverse circulation represents 
energy of inertia oscillations whose character, however, 
cannot be in any way determined from this investigation. 

I t  remains to be pointed out, however, that in general 
differences in density in the atmosphere are set up largely 
by gradual radiative processes, nnd that rendjustment of 
actual atmospheric systems takes place simultnneously 
with the slow establishment of density differences. For 
this reason readjustment processes must sutoninticnlly 
take place on a nearly quasistatic basis, passing through 
an infinite number of equilibrium stages, and arriving a t  
the final state witliout appreciable energy of oscillation. 
Under these conditions the amount of lieat energy re- 
quired to bring about the change in densit;v is less than 
would he required if the henting and expansion took place 
prior to the readjustment of mass distribution. 

As a variation of the above problem it would be of 
interest to  determine tbe changes that would be produced 
if a third inass of relatively lighter fluid overlies the two 
overturning air masses. Strictly spenliing, since there 
would be upon rearljustnient a deformatioii of the internal 
boundary between the two Inyers thus formed, Interwl 
convergence ancl divergence accompanier1 by the qe11e~q- 
tion of weak transverse circulation und also a defonnntion 
of the free surface should be expected in the upper layer. 
If, however. the upper layer is relatively deep, these 
effects would be sufficiently sninll to he neglectetl, tlie 
upper layer being considered at' rest with a level surface 
in the final state as well as initially. 

An examination of the conditions imposed by tlie ncldi- 
tion of such a layer shows that dmost the same fund:+ 
ment:il equations as were previously derived will serve to 
specify the solution of a problem of this type, provided 
that for each set of densities chosen, the initid tlepths of 
tlie two air masses comprising the lower layer he:lr a 
given fixed ratio to each other. We may thus represent 
the initial (clashed lines) and final stntes schematically 
as  in figure 4. 

In region I the pressure a t  tlie surface niay be expressed 
as follo\\-s: 

where p ,  is t,he pressure a t  the level DO'. 
differentiated with respect' to y, 

\\lien this is 

- " 
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P" 

II m Yo I 
FIGURE .I.-Srhernatic representation of fiwl h t e  01 system containing three alr m s w .  

1ncorporat)ing this expression for the pressur.e grnclient in 
cquation (6) and proceeding as  in the prenous problem, 
the fundamental equation for this region is fount1 to be, 

yoI = y + Q'e -5 (90) 

in which A' is now defined as 

Esactly similar consiclera tions lend to the following 

y0111=y+ &kIIe& (92) 

fundamenttil equation for region 111, 

where AI1' is given by 

dgDof py 
(93) 

In  region I1 the pressure gmdieiits may be oht,zir.ed 

XI" = 
.f 

from the followng expressions for ps' n n d  pu:  

p,' =gp' (D" + D"' - 2) + gp" (Do' - I)" - D"') + p , ,  (041 

(95) p o  =gpD" +gp'D"' + gp" (Do' - D'I - 0"') + pc .  

Differentiating these 

Again defining a by equating the coefficients of yor1' and 
solving, the following equation results: 

If now the fundamental equations for region I1 :ire to 
have the same form as (63) and (64), it is necessary that 
the roots of this equation differ only as to sign, as was the 
case previously. This imposes the condition that 

-- Do' P ' ( P - P f f ) = O .  
Do P ( P ' - P " )  

Retaining the same rnhio of densities in the lower layer 
as was used in the first problem and assuming that p"= 

Do 
0 . 8 0 ~ ~  the value of the ratio DO' ~ t.urns out to be 1.195,098. 

The quantity CY now becomes equa.1 to 
constants K ] ,  K ~ ,  and A are defined as follows: 

1 
I'= 

P - P  'I P , P  (101) 

A- J i a  
Carrying out similar operations as previously, an equation f 
comparable to (40) is obtained: The condition (100) also causes X I  to be equal to VI1. 
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boundary conditions can be done in almost' esmtly the 
same manner as before, leadilig to the nunicricnl i-ti,lues 
given below: 

The determinat.ion of the constants to be fised by BUMMARY 

1. If, on a rotating eftrth, a layer of incoIilpressible fluid 
of uniform depth and infinite horizontal estent composed 
of two motionless fluid masses of differing densitv a.nd 
sepa,rate,d initially by a plane vertical partition, is allowed 
to readjust itself slowly upon removal of the pa.rtition, the 
system will come to a state of equilibrium in which the two 
masses a,re se,para.ted by an inclined boundary sloping 
downwa,rd toward the lighter fluid mass, and in which the 
free surface is deformed in such a nianne,r that the maxi- 
mum depth occurs a t  a point above the internal boundary 
and the minimum depth a t  t,he point where the thicl- \ness 
of the lighter fluid becomes zero. In  obtaining this result 
n.nd those that follow, all frictional effects as well as mixing 
n t  the mutual boundary of the fluids, are assumed to be 
absent. The Coriolis parameter is not a.ssumed to vary 

formed as previously, and if the results are plotted on t,he within the dimensions of the system. For an initial 

C= +0.335,15X 
a= +0.180,20X 

Q"'= -O.O27,73X 
K1= - 0.12 5,19 X 
IC2= +0.171,17X 
Q1= +0.324,97X 

The expressions for the depths and for the yelocities are 

& I =  -0.00'7,13X 

Q 2 =  +O.O14,81X 

N 
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same scale as before the diagram shown in. figure 5 is 
obtained. It is seen that now a weali west wuid prevails 
in regions I and I11 and also in the left portion of the lower 
layer of region 11. The upper layer nom has n continuons 
distribution of westerly winds, while the right hand por- 
tion of the lower layer in region I1 has easterly winds with 
velocities as shown. The initial state is shown by the 
dashed lines. 

In  concluding, it might be remarked that the above 
analyses depend essentially upon the fact that in an in- 
compressible fluid of uniform density, that is, in a homo- 
geneous and incompressible fluid, there can be no variation 
of gradient wind with elevation. This is also true for a 
homogeneous and compressible fluid such as an adiabatic 
atmosphere. It should therefore be ossible, n t  least, in 

composed of two air masses each hnving a constant poten- 
tial temperature. 

theory, to carry out a similar calcu .p ntion for a system 

depth of 8 kni. and a ratio of densities equal to 0.96 the 
shape of the free surface and internal boundary is given 
by figure 3. 

2. Due to the action of pressure gradients and Coriolis 
forces during the readjustnient of the above system, hori- 
zontal velocities parallel to the original discontinuity will 
be set up. The distribution of these velocities will be 
such that if in the Northern Hemisphere the discontinuity 
is imagined, for the purpose of reference, as extending 
from east to west with the lighter fluid to the south, 
easterly velocities will appear in the denser fluid, decreas- 
ing to zero at great distances to the north and increasing 
southward to a niasimum a t  the point where tlic thickness 
of the heavier fluid becomes zero. 

In  the lighter fluid the velocity will be zero a t  great 
distances to the south and also along the vertical a t  which 
the elevation of the free surface is a maximum. To the 
south of this vertical the velocities will be mild easterly, 
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having a maximum above the point where the internal 
boundary intersects the lower surface of the layer. To 
the north of this vertical, westerly velocities increasing 
northward will prevail, retiching a maximum a t  the point 
where the thickness of the lighter fluid hecomes zero. 
Within each n:ass of fluid there will be no variation of 
velocity with elevation. A graph of the velocities for a 
density ratio of 0.96 and an initial depth of 8 km. is given 
in figure 3. The unit of velocity used is a function of 
geographical latitude and amounts to about, 2S0 meters 
per second in niiclclle latitudes. 

3. I n  the above system there will be a decrease of 
potential enercy of mass distribution during the read- 
justment. Also, there will exist in the fianl state a certain 
amount of kinetic energy represented by the relocity dis- 
tribution already described. Computation on the ex- 
ample already cited shows that the amount of potential 
energy set free is nearly three times as great as  the kinetic 
energy represented by the circiilaiton set up. The 
difference between these two quantities is accounted for by 
the fact that the readjustment was assiinied to take place 
slowly on a quasistatic basis, implying the existence of an 
external retarding agency which nhsnrbs a portion of the 
potential energy rendered available. 

If the process is considered as taking place a t  its natural  
rate, the system will then arrive a t  the equilibrium point 
with a certain amount of kinetic energy of oscillation. If 
this additional kinetic energy is included, the suni of 
potential and kinetic energy for the system remains con- 
stant a t  all stages of the process. The character of tlie 
oscillations perfornied by the system cannot he detcr- 
mined from this analysis. However, it is prohnhle that in 
the actual atmosphere density differences are generally set 

up gradually, so that redjust’ment proce,sses automatmi- 
cally proceed in an almost qua.sistat,ic manner, aad energy 
of oscillat,ion does not a.ppear t,o a significant ext,e,nt>. 

4. A problem comparable to the above but involving 
the presence of a third ma.ss of fluid overlying t,he system 
can he treat,ed by a.lmost exn.ct,ly t>he same niat,hematical 
set-up sa,ve for numericd vdues as was used in the first 
andqsis, provided that t,he clepth of t.he third mass is 
re.latively large in comparison with the ot’her two, and that 
the initia.1 dept,hs of t,he first two masses bear the following 
rehtion to the densit,ies chosen: 

D0’- P! (P- P”) , a- - P (P’ - P” 1 
where Do and Do’ are the clepths of the havier  a,nd lighter 
fluids respect’ively a.nd p and p’ their densit’ies, while p” is 
the density of t’lie third mass. 

Taking the same value for the rat’io of densities in the 
lower two masses and assuming a value of p” equa.1 to  
0.80 p,  and a va.lue of 8 km. for Do, the result shown in 
figure 5 is obtaine,d. The dia,gra.m is to he interpreted in 
the same. manner a,s figure 3. 
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Prof. (2. G. Rossby of the Massachuset’ts Institute of 
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gladly gave. The underlying principles involved in this 
work form a. part of t8he niaterinl c.overetl by Professor 
Rossby in his lectures at8 the Inst,itute which the author 
ha.s had the ple,asure t,o a.ttend. Also, the author desires 
to express his apprec.iat,ion of the he,lp rendered by R. D. 
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